Canonical Forms for Non-Rigid 3D Shape Retrieval

نویسندگان

  • David Pickup
  • Xianfang Sun
  • Paul L. Rosin
  • Ralph R. Martin
  • Zhi-Quan Cheng
  • Sipin Nie
  • Longcun Jin
چکیده

We present a new benchmark for testing algorithms that create canonical forms for use in non-rigid 3D shape retrieval. We have combined two existing datasets to create a varied collection of models for testing. Canonical forms attempt to factor out a shape’s pose, giving a pose-neutral shape. This opens up the possibility of using methods originally designed for rigid retrieval for the task of non-rigid shape retrieval. We demonstrate the benchmark by using it to compare the performance of nine canonical form methods, using three different retrieval algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SHREC’15 Track: Canonical Forms for Non-Rigid 3D Shape Retrieval

We present a new benchmark for testing algorithms that create canonical forms for use in non-rigid 3D shape retrieval. We have combined two existing datasets to create a varied collection of models for testing. Canonical forms attempt to factor out a shape’s pose, giving a pose-neutral shape. This opens up the possibility of using methods originally designed for rigid retrieval for the task of ...

متن کامل

An evaluation of canonical forms for non-rigid 3D shape retrieval

Canonical forms attempt to factor out a non-rigid shape’s pose, giving a pose-neutral shape. This opens up the possibility of using methods originally designed for rigid shape retrieval for the task of non-rigid shape retrieval. We extend our recent benchmark for testing canonical form algorithms. Our new benchmark is used to evaluate a greater number of state-of-the-art canonical forms, on fiv...

متن کامل

Euclidean-distance-based canonical forms for non-rigid 3D shape retrieval

Retrieval of 3D shapes is a challenging problem, especially for non-rigid shapes. One approach giving favourable results uses multidimensional scaling (MDS) to compute a canonical form for each mesh, after which rigid shape matching can be applied. However, a drawback of this method is that it requires geodesic distances to be computed between all pairs of mesh vertices. Due to the super-quadra...

متن کامل

SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes

Non-rigid 3D shape retrieval has become an important research direction in content-based 3D object retrieval. The aim of this track is to measure and compare the performance of non-rigid 3D shape retrieval methods implemented by different participants around the world. The track is based on a new non-rigid 3D shape benchmark, which contains 600 watertight triangle meshes that are equally classi...

متن کامل

SHREC'10 Track: Non-rigid 3D Shape Retrieval

Non-rigid shape matching is one of the most challenging fields in content-based 3D object retrieval. The aim of the SHREC 2010 Shape Retrieval Contest of Non-rigid 3D Models is to evaluate and compare the effectiveness of different methods run on a non-rigid 3D shape benchmark consisting of 200 watertight triangular meshes. Three groups with six methods have participated in this track and the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015